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0. INTRODUCTION

* This final report summa.rizés most of the research sponsored by the
National Aeronautics and Space Administration under Grant NGR - 33-006-
020 during the period January 1, 1972 to Janua.rir 1, 1973. The research
supported by this grant deals mostly with problems of digital data trans-
misgsion and includes some new work on computer communication networks.
There are four self-contained sections labeled I through IV. Each section
has its.own figures, references and equation numbering.

Section I, Signal Processing with Finite State Machines, continues the
work on finite memory detection. New results for a time-invarianf
machine are given, optimum time-varying machines for detection are pre-
sented, and the structure and performance of these machines are developed.
Problems of Practical sigx-ﬁficance are discussed. Many talké have been
given on this subject. One paper has been accepted for publication, and
a second is almost completed. Invited papers were presented at the
IEEE Convention, in New York in March 1972 and at the Soutl;xeastérn
Systems Sympc..\s‘ium in North Carolina in March 1973, These papers have
been published in the records of the symposia. Two papers were presented
at the International Symposium on Information Theory in California in
January 1972. This work was performed by R.R. Boorstyﬁ,. P.F. Liynn,
and R, W. Muise and is continuing. |

Section II discusses work on Signal Parameter Estimation from Dis-
crete-Time Observations. New results relevant to the problem of esti-
mating several single-frequency tones from a finite number of noisy,
discrete-time observatione are presented. This problem has application

to data systems testing, radar, and other measurements. A paper will be



presented at the International Symposium on Information Theory in Israel
in June 1973 and will be submitfgd for publication. This work was performed
by R.R. Boorstyn-and D.C. Rife.

Section III contains work on Digital Filtering for Radar Signal Proces-
sing Applrications. A nowel approach in synthesil_zingd-igital filters for signal
processing applications is presented. This synthesis method takes advan-
tage of the known signal waveform structure and results in many fewer
digital computations as compared to convolution processing. This approach
is particularly suited to synthesis of matched filters for radar signal proces-
sing and yields matched or approximately matched filters which simulta-
neously have very low storage and very low computational requirements.

A paper has been published iﬁ the Transactions on Audic and Electronics,
IEEE, March 1972. This work was performed by R.R, Boorstyn and J. D.
Echard.

Secﬁcm IV contains work On Multiple Server Queues Where Not All
Semvers are Identical, This is an attempt to derive some properties of net-
workas of queues by considering the individual outputs of multiple server
queues: It is shown under what conditions the outputs retain the Poisson
character of the input. This work was performed by R. R. Boorstyn and
P.l McGregor..

The PIB faculty participating in this program were R.R. ‘Boorstyn,

who prepared the final report, R. A, Haddad, M. Schwartz, and J. K. Wold,



1. SIGNAL PROCESSING WITH FINITE STATE MACHINES

This paper is concerned witﬁ the implementation of communications
receivers using digital processors or digital computers and the effect of this
implementation on performance. One can consicier conventional (analog) re-
ceivers to consist of filters, summers, multipliers, comparators, matched
filters, phase-locked loops, etc. The usual method in converting these re-
ceivers into digital devices is to replace each analog component with its
digital counterpart. Thus, after the required sampling, digital filters re-
place the original analog filters, summers and multipliers are replaced by
digital summers and multipliers, etc. If the sampling is fast enough there
should be little deleterious effect on performance.

However, there is one further constraint that is the dominant concern
of this paper. Every coefficient, every data sample, and the results of
every operation must be represented and stored by a finite length word,
i.e., a finite number of bits. For a standard computer approximately 30
bits are available for each word and this should be sufficient. For special
purpose computers, or in time-sharing operation where the device is to be
used simultaneously for many similar operations, it is important to in-
vestigate the effect of reducing the storage capability considerably. It
is clear that as the number of bits is reduced, the performance will ulti-
mately deteriorate. If the amount of storage is increased from this point,
the performance will be reasonably satisfactory. However, if the size of
storage is reduced further the question arises: is there an entirely new
digital structure that will perform well with a minimum amount of storage?
This question is answered affirmatively in this paper.

To illustrate, consider a simple binary receiver. One of two equally



likely signals are to be sent, and n independent samples Xl' XZ’ ce ey Xn

are received. If one of the sig‘nrals (denoted by hypothesis HO] is sent then
ea..ch of the Xk has density fo(x). Otherwise (Hl)- they have density fl(x) .

The optimum receiver forms

(1) Ak)=¢n

+)~(k'1): k = ]'I veey Iy

where Mo) = 0, and decides in favor of H1 if A(n)>0. This is just a re-
cursive version of t;k1e likelihood ratio.

In general all the n data samples must be remembered with infinite
precision to make the optimum decision. If the data is assumed to be col-
lected sequentially in time, then equation (1) states that after k samples are
received these first k samples of data need effectively only be "remembered"
by storing t'he single number A(k) . Then A(n) is used to make the decision.
But the A{k) must still be stored with infinite precision. It can be shown
that, in simple examples, merely uniformly quantizing each A(k) to a finite
number of bits and using equation(l) results in a deterioration of perfor-
mance if the number of samples is roughly greater than the number of le-
vels of quantization.

There are, however, receiver structures which incorporate funda-
mentally this finite storage constraint, here called "finite fneﬁwry”, and
perform almost as well as the optimum infinite memory receiver given by
equation (1). These receivers can be modelled as finite state machines.
After the (k- 1)Bt sample the machine may be in one of m states, e.g., the
m levels of a log ,m bit quantizer. This state at time k-1, Sk-l' and the
next sample X‘k are used to determine the state at time k. The final de-

cision is based upon the state at time n. An example of such a finite



machine suitable for detection is shown in Figure 1. This is essentially a
polarity counter with a null-zgne and overflow.

| This machine, which can be called a "linear" machine, operates as
follows. If any sample, sayX.k >d, then the state of the machine moves one
step to the right, If X'k< -d it moves one step to the left. Otherwise it re-
mains in the same state. It remains in the end states unless, e. g., Xk<—d

in state m. The machine initially starts in one of the middle two states with

equal probability (assuming m is even and symmetrical statistics). If at

m
2

invariant machine since the transition rules from state to state do not

time n, Sn> , H1 is decided. Otherwise Ho is decideci. This is a time-
change with k. Cover [ 1] has shown that, remarkably, as the length of the
data sequence becomes infinite the probability of error Pe(m, n) asymptoti-
cally approaches zero if m > 4 for time-varying machines. Indeed, this
also holds true for m> 2 for certain statistics. Hellman and Cover [ 2] have
found the asymptotic probabilitjr of error for time-invariant machines and
bave shown that this also goes to zero under certain conditions. They have
also shown that the optimum machines resemble, asymptotically, that of
Figure 1 but with d — 0, The convergence of probability of error is slow
and little insight is gained from this asymptotic Behavior about optimum or
good machines and their performance for finite data sequences,

Lynn and Boorstyn [ 3] have evaluated the performance of the "linear"
machine for finite values of m and n. Typical results are summarized in
Figures 2 and 3, Briefly these indicate that for 2 bits of memory (m=8)
performance close to optimum (infinite memory) can sometimes be achieved.
These numerical results are for Gaussian statistics: fl(x) Gaussian with

. 2 . . .
mean p >0 and variance ¢~ , fo(x) Gaussian with mean -p and variance o



It is comforting that for this '"linear' machine an explicit and simple
expression for the probability of error can be obtained. This is given below

in equation 2.

) P- (m,n) = + ) T]-'E_
° 1+(a,/a )rn/.?. m J=l J
37 %1 (j odd)

where [3j =2Ja a, cos (mji/fm) + o,

m is even

u']. :Pr{xk < 'dl HI}

a, = Pr {Ix | <d| H }
oy =Pr{Xk>lel}
a4 +u.2+a3=1

and o,3>o.1 .

The first term in (2) is the steady state term since the second term van-

ishes as n— w0, Fo;- a,< o,3<<1 ﬁjcan be tightly bounded by g= a, -I_-_Z.Jc.las

1
for all j. Thus the second term can be bounded by —é*( °3-°1) ﬁn/(l-ﬁ) which
is independent. of m. Thus m appears only in the first term and n in the
second term. Both expressions are functions of a; and through them of d /¢
an& p /o for G;a.ussia.n statistics. Thus (2) should yield considerable insight
about the setting of the threshold d/c and the dependence upon signal-to-
noige ratio p/ o as well as the nature of the variation of Pe with m and n.
Some results for a four state machine are given in Figure 4.

To gain further insight we considered a machine with a different struc-
ture which we call a majority rule machine. This looks only at the last
2£-1 non-null { | Xk |_> d) samples and dec‘:ides by majority rule. E,g., if
28-1

more than half of them are >d then H1 is chosen. This machine has 2



9
states of memory and its performance is relatively easy to evaluate.

This machine performs about as well as 2 linear machine with logarith-
mically fewer (2£) states but ca'.rl1 serve as upper and lower bounds for the
linear machine. (The lower bound may not always be applicable.) Specifically
if the superscript L denotes the linear machine and M, the majority rule
machine, then |
eM

28-1

(3) PeM?tH my< Pel (21, my < P (2 n) .

A comparison of these two machines is given in Figure 5. Neither of
these J;'nachines are optimum, although Hellman has shown that the linear
machine for m=2 is optimum.

Improved performance can be obtained if the machines are allowed to
be time-varying. Muise and Boorstyn [ 4] have found the optimum time-
vary-machine. It can be described as follows. If in state i at time k-1 go
to state j after receiving i{k if

f.(X.)
1"k
(4) Yj(k)<’in X7

(k)
0 k)

1<
+ Li(k 1)__\,1._1_}_1

Li(k-— 1) is defined to be

Pr{s,_,= |5}

{5) Li(k-l) =fn ol s Y
k-1"""0
and can be viewed as a likelihood ratio where the ''data' is the only ob-
servation that the 1"na.chine can make, i.e., its state, at time k-1. Equa-
tion {4) can be viewed as a time-varying quantizer where the yj(k) are the
threshold values and the I"i(k' 1) are the representation values. If, at
timme n, the machine is in a state S_1 for which Li {n) > 0 then H1 is decided;
otherwise Ho'

Algorithms have been obtained for calculating the sets of coefficients
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L.(k-1) and vy.(k) and for evaluating the performance of these optimum
i ] -

machines. The treshold values are given by

(6) Y_](k} = eJ(k) — ej_l(k) s _]:2,.. ., m

where

ej(k) = P {deciding H, at time n |sk=j.H1}

fj (k) = P {deciding H, at time n ISk=J, Ho}

It can be seen that if at time k the design of the machine in the past is
known then the coefficients in (5) can be evaluated. However, the coeffi-
cients in (6) depend upon the future design of the machine. The algorithm
essentially starts with an initial design and iteratively runs back and forth
in time applying equations (6) and (5) in turn. It has been proven that this
algorithm converges and for typical examples the convergence is rapid.
Figure 6 displays the coefficieﬁts for an example. Note that the coefficients
for n=8 are not simply extensions of those for n=4 although the difference
does not seem to be great. This suggests a suboptimum and simpler design
which would find the best coefficients for each k as if it were the time of
decision,

Typical results for the optimum machine are also shown in Figures 2
and 3 for Ga.ussia.ﬂ statistics. Also given there for reference is the per-
formance of the optimum infinite memory machine and of the polarity coun-
ter. These results show that remarkably good performance can be ob-
tained with relatively simple machines and a very small memory-size
limitation.

The basic results in the optimization above can be inferred from the
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following argument [ 5] . Let G denote a correct decision at time n. Then

at time k
l m o
(1) Pi{cls, ,=i) = Pr(C|s, =¢,8, .,=ix, ,H.) -
k-1 _]Z'—'OB-_—I‘[oo k k-1 L

Pr(s, =t|s, =i %0 Hy) o

ka(xklsk_ =5 H Pr(H, |8, 1=t dxy

But the first term in (7) is Pr(C |Sk=2 . Hj) and is used to form the terms
in (6), the second term is Pr(8k=!l ISk_ 1=i, xk) = 0 or 1 depending on the de-
cigsion rule at time k, the third term is f%(xk|Hj)=fj(xk} , and the fourth
term is used to form (5). If Aiﬂ(k) is the region of X such that a transition

will occur from Sk- =1 to Sk= §, then

m

1
(8) P(C|s, ,=i) =; ' Pr(C|S, =, H,)f.(x )
k-1 =l }[iﬂ(k)[j;) S L RS

Pr(Hj|Sk_1=i)] dx,

The optimum transition rule for going from Sk—l to Sk can be found
from (8) by, for eé.ch iand X finding the £ that maximizes the bracketed
expression. Muise and Boorstyn, in addition to other results, have given
structure to this updating rule and proven its optimality. From (8) it is
easy to extend this results to include time -varying statistics, many hypo-
theses, and time-varying memory sizes.

Although the memory has been constrained to be finite by limiting it
to a sequence of states from a finite alphabet, the coefficients in {4) in the
above analysis are not so constrained. (The arithmetic operation indicated
in (4) is performed instantaneously, i.e., not stored, so that no discrete

limitation need be put upon it. ) These coefficients must be stored and there
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are approximately 2nm of them! It is not known at this time what the effect
would bhe if the storage of these E‘oefficients were also limited. However the
stoi'a.ge of the states is data sensitive (read-write memory) while the coef-
ficients are (except for an adaptive machine) fixed (read-only memory).
These differences can be exploited, especially by time sharing the coeffi-
cients and the arithmetic operation with many similar detection processes.
A sketch of such a structure is given in Figure 7.

Further research is continuing on many aspects of this problem - op-
timum time-invariant machines, algorithms for M-ary detection, other
communications receivers, such as equalizers, more practical transition
rule algorithms, time-sharing implementation, etc. It is hoped that these
investigations will provide a new and more efficient viewpoint for designing

communications systems incorporating fundamental digital constraints,
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1I. SIGNAL PARAMETER ESTIMATION FROM

DISCRETE-TIME OBSERVATIONS

This paper is intended to present some new results relevant to the prob-
lem of estimating the parameters of several sinéle-frequency tones from a
finite number of noisy, discrete-time observations, This problem has ap-
plication to data system testing, radar, and other measurement situations.

The general model is indicated on Figure 1. In general the signal has

k
the form Z b.1 exp [ jlw i.t +ei)] . In a working system the imaginary part

may be del:iired from the real part by a Hilbert transformer or the imaginary
part may not be processed at all.

Time does not permit an examination of all the possible cases. There-
fore, we will only discuss ‘the case of a single tone whose imaginary part
is a single cysoidal tone. An understanding of this case is fundamental to
an understanding of the other ca.ées.

The parameter estimation problem was formulated and examined by
Siepian in his often-quoted paper of 1954, [1] Qur intent here is to study,
in moré detail, a specific variation of the problem.

. The real part of the Qignal, s(t), is b0 cos(w Ot +90}. Suppose all three
parameters are unknown, but only bO and w, are to be estimated. (The
phase can be estimated but we will not do so.)

The computer input will be two sets of samples,

T
X = XO’X1’°' 'XN-—I] and Y = [YO'YI" . YN-I] , where
Xn=s(tn) +W(tn), n=0toN -1, (1}
v o v
. Yn=5(tn)+W(tn),n=0toN-l, {2)



and

s(t) = b, sin (w .t +6_ (3)

0 0 0) )
v ‘ -

W(t) is the Hilbert transform of the noise, W(t). We only consider the case
of independent noise samples.

If we write Z =X + jY then the joint probability density function (p.d.f.)

of the elements of the sample vector Z when the parameter vector is g is

given by
N R N=1 :
HZsa|= 5| exp |- —— % [ -n)? v )| @
o2 20 n=of ™ © noon

where

a=[w.b0]", | (5)

p.n=bcos (mtn+ 6), ‘ (6)
and ‘

v, = b sin (mtn+9 ). ‘ (7)

We will writet =i(n,+n)T.
n 0

In developing the topic we will consider three main aspects of the
éroblem. First we will examine lower bounds to estimation error, in
particular Cramer-Rao lower bounds. Then we will develop and analyze
maximum-likelihood (ML) estimators of the signal parameters, Finally,
we will discuss practical estimation algorithms and simulation results.
The frequency estimation algorithm has a threshold effect, which we will
also discuss.

BOUNDS

Let us first look at lower bounds to estimation error. In an estimation
(or measurement) system it is important to have numbers that indicate the

best estimation that can be made with the available data (the observations).
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In a measurement system RMS errors are important and are often used
as a measure of system inaccuracy. Estimation bias is of secondary im-
pértance, although it is generally desirable to rﬁinimize bias. In this report
we will generally find that the bias can be neglected. Thus RMS errors will
be the important consideration.

Lower bounds to estimation accuracy have been studied by many people.
Some of the better-known bounds are: the Cramer-Rao (C-R) bound [ 2] ang
its generalizations [3],the Bhattacharyya system of bounds [4].the Barankin
bounds [5. 6],the Ziv-Zaki bounds [7],and the Chapman-.Robbins bound [8].
The C-R bound is imbedded in the Bhattacharyya system of bounds and in the Barauk
inbounds. The Chapman-Robbins bound is relatedtothe C-Rbound. The difference
is thatthe Chapman-Robbins bound avoids the need for the regularity conditions
required intheC-R and Bhattacharyya bounds. Seidman has observed that many of
the bounds are loose, especially at signal-to-noise ratios{SNR)above threshold [9] .
Someare a.ls'o difficulttouse. Wé will use maximum-likelihood(ML)estimation and
will generally be able to keep the bias very small. Thus, above threshold,
the C-R bound will apply. We will separately evaluate threshold effects.

The generalized C-R bound is due to Rao [3‘].It can be shown that this
bound is the best (tightest) of a certain class of bounds [ 10] .

Before reviewing the bound it is helpful to make some definitions, We
assume the indicated operations are legitimate. (They are in this problem.)
Let H{Z, o) =log f(Z ;a) . (9)

Let S be the vector defined by its typical element:

e H(Z, a) . (10)

The Fisher information matrizx, J{a), is.defined by

T=E{ss’}. (1)
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A typical element of J is

‘ = o= - .. 1
:r.1j E{HaiHﬂJ} E{Hum} ) (12)

v v

Let g(Z) be an estimator of g . Let the matrix D be defined by typical

element

d
ij a a,

'E{ai(é)} . (13)
Let the matrix C(a) be defined by
- - T -
Cla) =E{&-o)(d-0)" }. (14)

With these definitions and certain well-known regularity conditions on

-f(Z;a) and J, the generalized G-R bound is the statement that the matrix

C -DJ“1

DT is positive semidefinite. From this we find that

var{a,}> [DI"'DT].., i=1L23,...p, | O (15)

where [ ]ii denotes the ith diagonal element of [ ] and p is the number
of elements in g . We will ignore the conditions for equality to occur in

(15) since they are generally not met in the problem at hand.
¥—— E{a.}= 5., (16)

which happens when g is an unbiased estimator of o, then D =1 and the

bounds becorne:[ 11]
Var{gi}?_Ju,i:ltop. (17)

It can be shown that with f(Z; q) as given above

N-1
J. . = 1 Z . al"Ln 6l"'n + an an (18)
ij G_z L 8ai Bu,j 6‘a.i Baj -
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where

T - (19)

= [w b.,8

_g,_o 01 0! 0]

After determining the elements of the J matrix, the details of which

are omitted, one obtains:

2 2, 2 2
b7 T (n0N+2n0P+Q1 0 blT(nDN+P)

1
J:LZ 0 N 0 (20)
o
b2 T(n.N +P) 0 b% N
I S 1
where N-1
p=y n-HEL (21)
n=0
o, 1)(2N-1
Q= ¥ nf-NE-DER-1 (22)
n=0

and nOT is the time at which the first sample is taken.
From here on let us suppose n, = 0. This will be convenient later.

Front (20} the bounds will depend upon n, We will not dwell upon

this dependence. '
22

1

will be th

1e saime wnet
the phase were known the J matrix would be

J 0

0 To2 |

for example, If the frequency were known the J matrix would be



21

0 Jag},

oo -

Observe that the elements of J are not functions of w or 8 . This is
not true in the more general cases.
Inversion of the J matrix is easy. When all of the parameters are un-

known the results are:

Var {6 .} > 120 (23)
0" = bg TEN(NZ-1)
Var {by} > % /N (24)
Var {% } > %r_[z_N_L) (25}
b N{IN +1)

MAXIMUM LIKELIHOOD ESTIMATION

Now let us look at ML, estimation of @5 and bD' the frequency and
level. The ML estimate of g is the value of a, say g , that maximizes
f(Z;a) when Z is the observed sample vector.

The maximum of f(Z;qa) will occur at the maximum of log(f) =H(Z, o),

or at the ma.ximqm of the function

_ 1 2 2
L=-5 Iz,(xn- kS (Y -y )S | (26)

Since in , ZYIZ1 , and o2 are not affected by w, b, or 6, we can drop them

from L and use LI:

_2 Ly |
L, =5 E{an.n+ Y ov) - ;[p + vn] (27)

n
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=g'r]—3—- Z{l [ Xn cos{nw T+8) TYn sin (nw T +8)] - bz (28)
Define

F(Z,w) = ; (Xn cos nwT +Yn sin nwT) | (29)
and

G(Z,w) = E(Yn cos nwT-X_sinnwT) . (20)
Then

leTzqh[F(g._,w)cosB+G(_Z_,w}aine]-bz (31)

Assuming bo > 0, we need to maximize F cos 8.+ G sin 6 over both
6 and @ . The maximum over 0 is 'J F2 +G! , Thus the ML estimate of “,

is the value of w that maximizes

Bo) =[ F2(Z, @) + G2(Z, )] /N (32)

-~
-

The ML estimate of bo is b0| =af B{w) . {32)

Relationship to DFT

Recall that the discrete Fourier transform (DFT) of the vector Zis

the set of complex numbers: [ 12,13, 14]

N-1

1
A =—

K N 5to
If we define a function A (w}) :

e-anT ,

then
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A =A|lSF| k=0, 1.., N-1. (36)

It is easy to show that the function B(w) defined above is
2
B(w) = |A(e)]”. . (37)

We see, therefore, that ML estimation of wo and b0 is related to the DFT

of the sample vector Z . This fact will suggest a practical algorithm later.

Properties of cSO

Because of the nonlinear nature of the estimation algorithm we are
unable to derive the distribution functions for bo and @ 0 We can, however,
show:

i. The p.d.f. of @ is symmetrical about @ modulo w

2. Var {w } is proportional to ws and independent of @ g (ms =27/T.)

Noise Model. The following noise model leads to easy proofs. Let {Vn} be

a set of independent Rayleigh r.v. with parameter 1. That is

v exp[-vZ/Z] . v>0
fv' (v) = (38)

n
0 s VX0

Let {¢n} be a set of independent r.v. uniformly distributed over
(" T, 'ﬂ') -

We model the Gaussian samples as

Wn =gVn cos ¢n {29)

and

W, =oV_sine_. (40
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Analysis . Recall
Z =X +)Y
n n n
Then, using our noise model,

jinw

T+99 it

1 toVe © . (41)

-jinp-¢_ +6,+nw . T)
= [Zbe‘]ﬁ+gVe n 1 1 ] ’ (42)
where B = (w-w 1)T . {43)
Let "d: -B-—nw T, n=0toN-1. (44)

Since the ¢ are independent and uniform on (-7, 7}, in effects so are the
n

Vn - We are therefore justified in writing

ie, .
; =i (np-vy ) {45)
Al =2 ¥, [ boe-JnB toV e n ]

Thus B(w)_-l-— [boz cosnp + 0'2 Vncos (ng - Yn)] 2
n

N n
Izl_-z- [ b, Z sin nf + o Z v  sin(ng- \.{n)] 2, (46)
n n

The independence from 60 is now obvious.
Without loss of generality, let B be the value of g in the range (-7, 7)

that maximizes B{w) . The estimator, 030 , will then have the value:

ol

R w P

= —S—l—— . ’
wo =W, t37 ; modulo @ _ . (47)
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Ohserve that B(w) is an even function of the pair B,Y - (48)
The statistics of -y are the garhe as the statistics of y . Thus the statistics
of -y . Thus the statisticse of -fﬂ must be the same as the statistics of fa .
Hence the p.d.f. of B must be an even function of fs and E {Es} = 0. From (46),
the statistics ofT3 do not depend upon W, or 60 ,. but do depend upon the SNR,
b, j20°

SinF:e we choose ZJO according to (47), the p. d.f. of ﬁ is related to the

p.d.f. of ® in the manner illustrated on Figure 2. The p.d.f. of 5:0 is even

%]
about & except for the part from Zwo tow , when @ < —'Eg-(or part from O
w0 .
. >_58
to.?,wo ws. w‘rmnm0 5 ). .
Consider the situation when & < -—28— L If Pr{ZwO <w, <o } is small,

whi.ch.it is when the SNR is large enough, the E{u;} =w, or a)o is unbiased.
If Pr{Zwo < 0 < w s} is significant then :00 ig biased in the direction of
w g /2 . In other words, E{ :oo-mo}> 0. KHuwy> ws/Z the above remarks
reply with the obvious modifications. Observe that due to the symmetry of

the problem, the bias of cAuo must be an odd function of w , about © S/2.

It is easy to show that if @ is equal to zero, ws/z. or w the p.d.f.

of t:>0 is even about @ S/2. Thus, in these three cases E(axo} = ms/z . We

see, therefore, that the bias of ;.10 has the following values:

@4 E(mo-wo)
0 ms/z

ws/Z 0

Cw -wafz

Clearly we expect to make frequency estimation errors if @ is close
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to zero or w . At moderate SNR, say above the threshold region, we would

not expect trouble if the difference between wo and zero (or w S) is at least
four times the RMS bound. In practice we do not expect the ambiguity at

zero at w s to be a problem,

-~

The variance of § depends only upon the SNR. Thus the variance of w4

is proporticonal to mz and is not a function of 80. The variance of w5 is a
function of @ g but its variation with @, is small at SNR above the threshold
region, Hence the C-R bound for unbiased estimators is appropriate in this

region.

An example, When there is no noise then it can be shown that

. B . .
Aw) =b el Oe-d(N-1ljz sin Nz (45)
N sin 2z
where
w-w
z =~ T:n’(w-wo)/ws. (46)
: 2
B(w) is |A(w)| . Thus
2 sin‘2 (Nz)
B{w) = bO > > . (47}
N sin™ (=)
This function is shown on Figure 3. The function is symmetric about wo
and has period w . The global maximum occurs at w4 and has value b(ZJ )

Notice numerous low-amplitude maxima. Without noise the ML estimates

of wo an b0 have no error.

When noise is present B(w) loses its clean, symmetrical shape and the
minor maxima get larger. The global maximum is usually close to @4
Figure 4 illustrates this situation.

If the SNR is small B{w) will occasionally be so badly distorted that
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the global maximum occurs at a frequency far removed from w4, 28 illus-
trated in Figure 5. When this happens, the ML frequency estimation al-
gorithm makes a large error. It is the occurence of these rare but large
errors, which we call sports, at low SNR that cguses VAR {wo} to pull away

from the C-R bound.

AN ALGORITHM

As indicated above, once an estimate of w o is made, estimates of b0
and 60 can be done by straight-forward computations, using appropriate
equations. Thus the difficult and time-consuming part of an algorithm is
the part that locates the maximum of B{w) . This part is essentially a search
routine,

One way to develop an algorithm is to use a two-part search routine.
The first part calculates B(w) for a set of w values between zero and ws ,
and identifies the w that maximizes B(w) over this set of w values. The

second part locates the local maximum closest to the value of w picked out

by the first part. We call the first part the coarse search and the second

part the fine search .

The Coarse Search

For the coarse search we evaluate B(w) at the set of frequencies {wk}

defined by

W, = ,k=0,1,2, ..., M-1, {48)

where M is a power of 2 greater than or equal to the number of samples,
N. We also always choose N to be a power of 2. This M/N is also a
power of 2.

Observe that the set {A(w )} is the DFT of the set {Zn} defined by
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0, n=N, N +1,...,M-1

The set {B(w, )} is simply the set {lA(wk)|2}

The output of the coarse search is the value of W, ., B2y @ that cor-~

T
responds to the largest member of the set {B(wk)} .

It is natural to use M = N in the coarse search. However, it turned out
that the w ’ thue obtained was the wrong choice (not close to the global max-
imum ) often encugh at low SNR to cause trouble, We found that the number
of wrong choices was significantly reduced when the coarse search used
M/N equal to 2 or 4.

Our coarse search uses a fast Fourier transform (FFT) algorithm to

compute the desired DFT.

The Fine Search

The fine search algorithm locates the value of w closest to w, that max-

{
imizes B(w). If the derivative of B(w) at y B'(mi) is positive, the de-

sired maximum is at a value of w greater than w Otherwise the desired

'

maximum is at a value of w less than or equal to W, .
Consider Figure 6. Given a frequency to start from W 4 the problem

is to locate the closest zero in B'(w) with B" (w) < 0, In the figure this oc-

curs at point B. Points A and C correspond to minima in B{w}.

Our fine search algorithm computes B'(w) at points P _ through P

1 8’

finally locating points on either side of the desired zero, points P? and P8'
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Then we use the secant method {Action [ 12], p. 52) to compute successive

approximations to point B and ;:he frequency estimate, @ . The iteration

formula is simple:

1 _R|t
B (minl)wi B (wi)wi_l

“i41 7 Bw, 1, -B (@) (50)

The process is stopped if B' {w .1) = B! (mi , if B'(mi) =0, or if

Y

o,

i +1-mi[ is less than 1 percent of the square root of the bound on the

variance of mi .

If w, <  then the initial steps of the fine search work to the left of w iz

R In either case the initial steps are
W
small enough to avoid missing the correct zero in B'{w); the step size is 3—1;31—-.

using B' (mE) <0 to indicate that @ < w

Threshold Effect

It is well known that nonlinear estimation is generally plagued by thresh-
old effects. At low SNR there is usually a range of SNR in which the mean
squared error {m. s.e.} rises very rapidly as SNR devreases. The SNR at
which this effect is first apparent is called the threshold. Receivers are
often said to operate above or below threshold.

Digital frequency estimation also has threshold effects, generally con-
neéted with thé occurence of sports. In this section wepresent a calcula-
tion of threshold effects. The result accurately describes one particular
model.

Consider the estimation of the frequency of a single complex tone. Let

the sampling frequency be w and the number of samples be N. Assume the

w
phase is unknown. Suppose the tone frequency is Wy = Zs . Assume the

algorithm is the following, using M = N:
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N
1 1
1. compute the set: Ak =X Z Z e

-j2 mak /N
n=0 n

This is
the DFT of {Zn} .

2. Identify the largest | Ak'|, say lAg |, and record ¢ .
3, Start the fine search at w = w, and continue until

the maximum of B(w) is found.
w

Since we chose Wy = -EE, AN/Z should be the largest. That is, the coarse
search should give £ = N/2. If { # N/2 we say a sport has occurred, If £ #

N/2 the m. s. e. is greater than zero and less than the square of the distance

tow, iy -

We will approximate the m. s. e. in this case by the C-R bound for an

unbiased estimator, which we designate méR . From equation (23),

2 3“’2
w = {52)
CR ™ 5 r2pN(N2-1)
where
b 2 :
p= "0/20". (53)

If a sport occurs, the outcome of the fine search will be any frequency
between zero and w _ - The p.d.f. is approximately uniform because the

signal has little influence. Thus we write the m. s.e. when a spo 't occurs

as
2
wZ _ws -
sp 12 (54)

w
In the general case where the signal frequency is not equal to s/2,

equation {54) would become
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2 2
2 w m’s
w = = tlw. - (55)

The total m. s, e. is the weighted sum of the two contributions,
m.s.e. = {m.s.e. /sport) p + (m.s.e. /no sport){l-p) {56)

Let the total m. s. e. be ""’2 . Then we have

w‘: 3w§
W =p =——+ (1l-p) {57)
€ 12 ZPnZN(NZ-l

The RMS error is
- /wZ (58)
YRMS T e

Next we calculate the probability of a sport, p, and verify that when a

sport occurs all possible £ except the correct one are equally likely.

Probability of a Sport. Let C, = lAk|, k=0toN -1, (59)

where A.k was defined above. When both signal and noise are present,
w

each Ck is a random variable. If the signal frequency is ZS and the

. . . . 2
noise samples are independent, normal, and zero-mean with variance ¢

then it can be shown that the Ck are independent with Rayleigh distribu-
tion:[ 10]

2
_NCy
NC 2
k 2o
T — > :
f(C)=—— e , C, 20, (60)

o

k #+£N/2

Letr =N/2. Cr has a Ricean distribution:[ 10]

N(Ci +b%)
NC B NbC_
= >
£(C)=—"¢ 1, |—=f ¢ 20, (61)
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where b is the signal amplitude. Then
= <
1-p=P, {anc, cr}

= f P {all C

X

= ¥ =
k<Cr/Cr_x"Pr {Cr-x}dx. (62)

N"'l
< = = < C =
But P {a.ll C C /C x} [ P {Cl C / X }]

k
Thus
x b'e N-1
l-p-= f (x) £, (y)d dx, (63)
x x 2 2
~ N -Ny©/2¢ “dy
[ ey = [N
Q 0 o
2 2
1. e Nx /2¢" . (64)
Then
2 2.2
NX N-1 N{X~+b
0 - 2 B 2
1-p= [ |1e ¢ N2 e 20 | BB ax. (e5)
0 o ¢ T
After some further work, we obtain
ot ey 1k Nok /k+1
Y - t(- -Nok /k+
l-p=), (N-1-Kk) k! (k1) © (66)
k=0
and
N CNp 2ol
P=1_ Z N!(-—l!m e Ne m (67)
N H_s ({(N-m)tm!)

It is easy to verify that the limit of p as p —0 is —N—ﬁ'-l— » Which is in agree-
ment with our assumptions. The formulas for p given above are neat

closed forms that cannot be summed on a computer because the terms
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CNI(-1
(N-m) m!

necessary to use the integral form and do numerical integration. When Np

get very large and-alternate in sign. Thus to compute p it was

is large one can use the first term of p:

p= 3t e NO/Z pcgon?, (68)

The calculated values of p are shown on Figure 7 .

Approximate RMS Frequency Error, We used the above formula for several

values; of N as shown on Figure 8. The small circles of the curves represent
the results of simulations, As can be seen, the simulation results agree
with the calculated curves. The curves are similar to the well known results
for the continuous observation case. See Van Trees, p. 285.

On Figure 8 the simulation for N = 16 each were done with 800 estima-
tions. The ones for N = 128 were done with 500 estimations. Five huncired
estimations will have a samp.’;e variance within 12. 5 percent of the true var-
iance with the same confidence,

"~ One would not usually operate a’ system at SNR helow tHe threshold
Thus Figure 8 is useful mainly because it shows the SNR at Whl.ch the thresh-
old effect starts. Ail SNR above threshold can he -onsidered to be “nigh
SNR'" in the sense that the variance of ML estimators equals the C-R hounds
at high SNR , | |

Level Estimates

The simulations described above included level estimates according
to equation (33}, In every case the RMS level errors were almost equal
to the C-R bounds. Threshold effects were not observed!

Remarks_-

' MWe ran the above-described simulations with M = 4N instead of M = N.
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There was no significant difference in the results. Since using M = 4N is
more likely to result in correc-tly locating the global maximum in B(w), we
are led to believe that Figure 8 truly dep1cts ML estimation when the fre-
quency is one half the sampling frequency

The next question is, what about different signal frequencies? We ran
the simulation with M = 64, N =16, and fO = 2120 Hz, using -10, -5, 0, and
5 db SNR. The only point different from the 0 points is the [[] point on Fig-

ure 8. Ag before, level estimates did not show a threshold effect.

SUMMARY

This has been a quick trip through a study of the problem of estimating
the frequency and level of a cysoidal signal from a finite number of noisy
obserrv‘a.tions of the signal. We derived the equationsg that describe the Cramer-
Rao lower bounds to the variance of estimation errors. Then we derived
" the maximum-likelihood estimators and showed their relationship to the dis-
crete Fourier transform. The analysis of the ML estimators revealed some
of their properties. Then we looked at an algorithm suitable for implementa-
tioﬁ on a digital computer. The algorithm almost always yields ML esti-
mates. We were able to derive an expression for the threshold behavior
of J‘(;'Ine algofithﬁ. Simulation results verified the analysis.

The overall conclusion for the case studied is that ML estimates is
feasible and will yield estimates which are as good as pe'rmitfed b\uj the C-R
bounds {above threshold), |

The general cases of real tones (sinusoidal signals) and of many tones
are, in a sense, an extension of the case studied here. The presence of
several cysoidal signals introduces complemty in the bounds, ML estima-
tion, and practical algorithms. These matters have been studied[m] but

are not reported here.
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III. DIGITAL FILTERING FOR RADAR SIGNAL

PROCESSING APPLICATIONS

A novel approach in synthesizing digital filfers for signal proéessing
applications is presented. This approach is an'extension of the frequency
sampling method of nonrecursive filter synthesis. Appropriate time delays
are used in conjunction with a set of parallel complex exponential resonators
whose outputs are summed to yield a desired filter impulse response. This
synthesis method takes advantage of the known signal waveform structure
and results in many fewer digital computations as compared to convolution
processing. This approach is particularly suited to synthesis of matched
filters for radar signal processing and yields matched or approximately
matched filters which simultaneously have very low storage and very low

computational requirements.

I, Introduction

Interest in the application of digital filtering to signal processing is
ir;c_reasing and numerous publications{Refs.1-5)have been written on various
approaches to digital signal processing. In this paper a novel approach to
gignal processing digital filter synthesis is presented which takes advantage
of the signal waveform structure and results in a reduction in the required
digital computations. |

The signal to be extracted from_ an interference background often con-
sists of only a few data points as compared to the amount of data to be pro-
cessed. An example of this is found in radar signal processing where the
data to be processed usually consists of thousands of samplés, whereas
the signal is composed of several hundred or fewer samples.

The input data to a radar analog signal processor consists of analog
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~voltage variations representing signal plus noise {or noise alone) corre-
sponding to a given time or rarIge extent. To use this information in a digita:
prbces sor, these voltage variations should be sampled such that there is at
least one sample per range resolution cell (defined as the reciprocal of the
signal bandwidth)., These samples arethen con*&rerted into binary words which
represent the amplitude and phase, or in-phase and quadrature components
of the sampled analog voltages. These complex valued words or samples
are then operated upon to extract the wanted signal from the background
noise.

The radar signal to be extracted from noise generally has a time extent
less than that of the input data of interest, but longer than a range resolu;—
tion cell if the signal bandwidth-time (BT) product is greater than one. The
presence and location of the signal in the input data can be determined in an

optimum manner by convolving the complex conjugate of the sampled signal

reversed in time, s*(-n), with the input data, y(n), as follows T:
n

a(n) = ), y(j)s* [N-n+] ; n=0, 1,2, ..., I-1 (n
j=0

where a(n) is the sampled cross-correlation function of y(n) and s*(-n). It
is assumed that there are J range data samples and N signal samples. If
the signal is present at some point in the input data, the cross-correlation

functionﬂ. will peak up at that range location,

1'I1: can be shown that, for purposes of signal detection and signal parameter
estimation, the signal can be extracted from Gaussian-distributed inter-
ference in an optimum manner by matched or correlation filtering (Ref. 6).
This type of filtering involves the convolution of the signal and data as
described above,

TTSince the %(j); j=0,1,...,n in (are randoh‘l'variables, then each afn} is
also a random variable. Therefore, the discrete function {a(n);n=0, 1,
., J-1} is a sample from an ensemble of discrete random functions.
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This type of signal processing is referred fo as "Moving Windaw Con-
volution Précessing" since the finite-length samples signal reversed in time,
g*(-n), acts as a window moving past the range data. Note that each value of
a(n) is formed by one position of the "moving window'' relative to the range
data, If J samples of range data are present, there must be J different
positions of the''moving window" in order to produce J different values of
a(n).

Another method of extracting the signal from the range data is to per-
form the filtering in the frequency domain. That is, transform all of the
range (time) data to the frequency domain by use of the Digital Fourier

Transform (DFT) as follows:

J-1

-l

Xik) =
n=0

E’L] , k=0,1,2,...,7-1 (2)

x(n) exp [ o R
Then, perform the filtering by multiplying the frequency data by the
Fourier Transform of s*{-n):

Y{k) =8*(k) X(k); | k=0,1,2,...,7-1 (3)

The resulting frequency samples are then transformed back into the time

domain by use of the Inverse Digital Fourier Transform (IDFT):

J-1

a(n]r—lr- ) Y(k\escp[i—‘-*’—’ilin—]; n=0,1,2,...,7-1 (4)
; T
gl

T1

if the signal is present, the cross-correlation function'’, a(n), wiil peak
up at that range location.

If this method of processing were used, the Fast Fourier Transtorm
(FFT) and Inverse Fast Fourier Transform (IFF7T) would probably he used

instead of the DFT and IDFT as indicated above., The transformations

accomplished by the DFT and FFT, or the [DFT and IFFT, are identical;

1t See note on previous page.
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the way in which the transformations are accomplished is different (Ref. 7).

This type of processing is referred to as ""batch processing'’, since the
complete set or "batch' of range data is processed at once rather than in
subsets as in moving window convolution pro-..':e_sing.

Batch procesgsing is sometimes more desirable than moving window con-
volution processing because many fewer digital compytations are required
when the Fast Fourier Transform (FFT) is used. However, the disadvantage
of batch processing is that a large amount of storage is required to store the
thousands of range data points. To date, batch processing for many radar
applications is too expensive to implement because of this large storage
requirement.

On the other hand, moving window convolution processing requires less
storage (only the number of signal samples) but more digital computations
and is, therefore, also very expensive to implement. However, if the
number of required computations in moving window processing could be re-
duced significantly, then the combination of relatively low storage and low
computational requirements would make it a desirable approach to digital
signal processing. Hence, it is of interest to consider ways of reducing the
number of digital computations required in moving window processing.

In the following sections of this paper, a synthesis technique is dis-
cussed which takes advantage of the signal waveform structure such that
the number of digital computations required is at least an order of magni-
tude lower than that required in moving window convolution processing.

In addition, the storage required with this technique is about the same as

in moving window convolution processing.
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In order to explain this technique clearly, several methods of synthe-

sizing digital filters are briefly reviewed in the next section of this paper.

I1I. Methods of Nonrecursive Filter Synthesis

In the digital filter synthesis problem, the desired impulse response

is assumed to be known and is represented by the sequence
{hin):n=0,1,2,... {5)

where each h(-) is complex valued, *This discussion will be restricted to
the synthesis of nonrecursive digital filters which are characterized by a
finite-duration impulse response such as is required in'moving window pro-
cessing. Hence, the impulse response will be represented by a sequence of

N complex numbers

{h{n): n=0,1,2, ..., N-l}. ' o {®)

A straightforward method of synthesizing a filter with this type of im-
pulse response is the convolution or 'tapped delayﬂline” filter realization
illustrated in Figure 1. In this realization the N weights are the complex
1.‘ra.11laes of the N samples in the filter's impulse response, and each of the
N-1 delays used corresponds to the delay between the filter impulse re-
sponse samples.

Now, if the impulse response is required to be
hin) = a*{N-n}; n=0,1,2,...,N-1 (71
then the output of the convolution filter of Figure 1 is related to the input
data, y(n), as given by Equation (1). Hence, this filter would perform the

moving window processing desired,

*In radar/sonar signal processing the number sequences encountered
are complex valued, hence, the need to assume h(-) is complex.
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The number of complex mgltiplications required with this filter is N. K
where N is the number of samples in the signal (and in the filter impulse
response), K is the number of data samples to bé processed, and where the
number of data samples is assumed to be greater than the number of signal
samples (K>N).

Now let us consider another method of synthesizing a digital filter with
the impulse response of Equation (6).

Since the impulse respcmse'is of finite duration, it can be represented
in terms of its Discrete Fourier Transform (DFTi {Hk:k =0,1,2,...,N-1}
as follows:

-1

N
he) =y I H exp [ £22-]; n-0,1,2,..., N1 (8)
n=

The z-transform of the sequence of (6)is

N-1
H(z) = J, h{n)z ™" (9)

n=0
Sﬁ,bstituting (8) into (‘}) and interchanging sumas, the sum over the n index
can be evaluated in closed form so that

N-1
-N
H(z) =z: I:‘J‘ 1-2 (10)
=0 -

2-1 exp [‘]2_771'{-]

N
Evaluating (10) on the unit circle where z = exp [j2mfT] leads to the

frequency response

N-1 Hk . .
H(f) = exp [ -j(N-1)7f 7], Z .N . exp[-J;k]_ sin Nwf (11)
. k=0 . , Sinﬂ'[f'-r- l;&_ ]

The symbol T denotes the time spacing of the number sequence in (6} and

is often assumed to be unity. Note that when z = exp 2Tk , H{z) = H
: N k
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i =k -
or, equivalently, when f = N H{f} = Hk .
The interpretation of (10) and (11) is as follows: the frequency response

of the digital filter which is described by the complex impulse response in

(6) is a sum of s%i_gx? frequency responses, each with a complex weight
H, and a center frequency X where k =0, 1, 2, ..., N-1, as illustrated in

k N~

Figure 2. A realization of the filter of Equation {10) is shown in Figure 3,
Each block in this figure represents a zonal filter with the a.pproplriate cen-
ter frequency and bandwidth. Since the term (l-z-N) is common to all of
the filter functions, it can precede the filter bank and be shared.

The parameters needed to completely specify the digital filter are either
the sequence {H'k’ k=0,12, ..., N-1} and the center frequencies
{fk =—-15N-T— ;1=0,1, 2, ..., N-1} or the sequehce {h(n);n=0,1,2,...,N-1]
and the time delay between samples, T . If the desired frequency response
is known, the filter weights are determined by sampling the desired frequency
response at the frequencies fk; the complex values of these frequency samples
are then used as the filter weights, H.k On the other hand, if the desired

impulse response is known, the filter weights, Hk’ can be determined by use

of the following equation, which is obtained from {8):

. N-1
-j2wk
H = ), Hn) exp[—JT\r-J_‘]; k=0,1,2,..., N-1 (12)
n=0

Note that the irhpulse response of the filter of Figure 3 is exactly that
given in Equation (6) if the.complex weights are selected correctly. In other
words, the samples taken from the frequency spectrum of h(n) are adequate
to completely desv;.:ribe the filter frequency spectrum.

It will be useful for later discussions to consider in more detail the
impulse response of the realization giw..ren in Figure 3. The impulse re-

sponse of the Eth block or subfilter of this filter is
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exp[ﬂ%ﬂ—g']:mo,l,z.... ;2=0,1,2,..., N-1 (13)

which is of infinite-time duration. However, when the term (1-z-N} is in-
cluded with the Eth subfilter such that the z-transform of that filter is

-N
l-= (14)

1- z-lexp J%]

the corresponding impulse response is

-

exp [l n=0,1,2, ..., N-1 32=0,1,2,...,N-1 (15)

which is of finite-time duration. Therefore, the impulse response of each
subfilter or block of Figure 3 can be thought of as a time response with a
rectangular amplitude and linear phase function that is sampled at the time
instaﬁts nT, n=0,1,2,..., N-1. The overall impulse response of the
digital filter is the weighted sum of the N time sequences described by (15],
where £ runs from 0 to N-1. The composition of the composite filter re-
sponse is illustrated in Figure 4, where N is taken as four.

In some applications, one would expect some of the complex weights
{Hk;k %0, 1,2,...,N-1} to be zero. For example, if the desired impulse
response {h(n);n=0,1,2,..., N- 1} represented data with a2 small band-
width (the complex value of the sequence varies slowly with increasing n),
many of the complex weights would be zero. A very special case would be
where the magnitude of the complex impulse response did not vary with in-
creasing n and the phase of the impulse response increased withnin a

linear fashion; that is, the desired impulse response is given by

. i2tkn}. _ _ _
H ' exp L5752 Jin=0, 1,2, ..., N1 (16)

where the index k may take on any one of the discrete values 0, 1,2, ..., N-1.
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The resulting filter realization would have only one block or subfilter, as
indicated in Figure 5. ’

The number of complex multiplications required in the filter realization
of Figure 3 is 2 + N- K, where N is the numberlof signal samples (and {ilter
impulse response samples), K is the number of data samples to be processed,
and K is asumed to be larger than N. The number of complex multiplications
required for each subfilter (including the complex weights) is 2. K. There-
fore, aaSuming that all N of the subfilters are needed, N: (2. K) complex
multiplications are required in the composite {ilter realization.

In comparing the two filter realizations discuésed thus far, one concludes
that the use of the convolution filter realization of Figure 1 requires fewer
multiplications than the frequency response realization and is, therefore,
simpler and cheaper to implement. However, a further consideration of the
frequency response filter realization leads one to a third filter realization
that requires many fewer multiplications than even the convolution {ilter for
some types of radar signals. This is the subject of the remainder of this

paper.

II1. Synthesis of Specialized Digital Filter Response

~ In light of the discussion of the previous section, consider the digital
filter illustrated in Figure 6. This filter is very much like the filter of
Figure 3 except for the time delay following each subfilter. However, the
impulse response of this filter is much different from the filter of the pre-
vious discussion.

The z-transform representing this filter function is

L-1 F - %],
F(z) = Z zﬁlN,I._L" £
¢ =0

(17)

ol =7
fos
1
N
1
[
t]
M
o
—
™
=
b
-
| SN
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where N is the.nu.mber of samples in the filter's impulse response, ‘L is the

number of subfilter, and -II%- is dssumed to be an integer. Evaluating {(17) on

the unit circle where z = exp (j27{T) leads to the frequency response

£(f) = axp ;-jw[ (] .1]“(,' Iéj:o  exp ‘ -jw[szf[ﬁ ] *%“

F

[£]

o P

sin [%] miT
(18)

sin ﬂ'[f "'--%-i-!

-

When z = exp [jZﬂ! [-ﬁ-] , F(z) .—.F!;or, equivalently, when f':[!ﬁl—-'-‘;r-]_? F{f) =F£,

The inverse z-transform of (17) yields the impulse response of the.

digital filter in Figure 6.

. L. N
i(FO 2)n=0,L,2, .0 -1%

j2mnlL
* L—"—- N . —Nl-w Em ZN

1(F1 N)e in=g T +1, L —1‘
' j4mn L

L,. N ,__2N_ 2N 3N
¥(F2 "N*) € 4 n= I—J ’ L + 11 L] L &

j2r(L-1)Ln

L . iamllbin N o N

%(FL_I ﬁ- ) e N M= (L"l) IJ L] (L'l) L +1s -' LI N"'lf (19)

The magni-tude and phase of this number sequence is illustrated in

' Fi gure 7. Those familiar with waveforms used in modern radar will re-

cognize this filter response as that which is required to optimally process

a Stepped Frequency Modulated (SFM) waveform (Ref. 8). As will be illustrated
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in the following example? the filter of Figu.re 6 optimally proces ses‘, ifl a
moving window fashion, the SFM waveform with many fewer multipliéations
than required by the conwvolution filter of Figure 1. Hence, Equation (l?),‘
which is realized as the filter of Figure 6, represents a method of filter
synthesis which, for the SFM waveform,; fulfills the goal set forth in the
Introduction : to reduce the number of multiplications required in moving
window processing. To illustrate this concept, consider the following ex-

ample.

IV. Optimal Filtering of the Stepped Frequency Modulated Waveform

Suppose it is d;asired to synthsize a digital filter that is matched (in the
signal processing sense) to the stepped frequency modulated waveform of
Figure 8. In this figure, N and L are assumed to be 1024 and 16, respectively.
The bandwidth of this waveform is Tt_iu‘f“) , where T is the basic time - delay of
the filter. The magnitude of the freque_:ncy spectrum of this waveform is
shown in Figure 9, and is repetitive with period% . The phase variation
with frequency, which is not shown, is nearly quadratic,

The filter which is matched to this waveform is s/hown in Figure 10,

Its impulse response is the conjugated time-inverse of the waveform shown

in Figure 8. The filter's frequency response is the conjugate of the wave-
form spectrum shown in Figure 9, and is composed of 16 sin Nx/sin x
responses, each with unity weight. Figure Il illustrates the composition

of this filter spectrum. The ripples in the pass band and stopband are due
to the sidelobes of the various sin Nx/sin x responses. Also note that nulls
exist in the stopband of the filter where every sin Nx/sin x response has
zero value,

The time response of this filter to the stepped frequency modulated

{SFM)} waveform of Figure 8 is shown in Figure 12. This response, which
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is the convolution of the impulse response of the filter of Figure 10 and the
SFM waveform illustrated in Figure 8, is very similar to a sin x/x function
in the vicinity of the mainlobe response with the accompanying high sidelohes.
If it is desired to suppress these sidelobes, than amplitude weighting can be
used. That is, the filter weights Ff;ﬂ =0,1,2, ..., L-1can be selected so
that the time response is similar to that in Figure 12, but with lower side-
lobes. As an example, suppose the sin x/x sidelobes are to he lowered to

30 dB below the mainlobe. Sixteen weights which are obtained by sampling
the Taylor Weight function (Ref.9) can be used in the {filter of Figure 10 to
yield the time response of Figure 13.

Tﬁe number of multiplications needed to process a sequence of samples’
with the filter of Figure 10 is I.- K, or léK where K is the num"‘b'ef of. san"q.alfes-:
to be processed. If the filtér realization of Figure 3 _ha,é been us‘:t_ad‘,‘ the num-
ber of multiplicatidhs fequired Wodld be 2-N ‘K, or 2048K Hlenlcléj,. t.he .
savings in multiplication for this partic&lar_éx’ample are a fa'.cto.r of" '12.I8.‘. I"f:\
nonunity weights are used with the filter of Figuré 10, the number. 6’1" muiti—
plications required will be 2- L' K énd the savings facto'r wiii be 64. - |

Of course, the filter matched to the waveform of Figure 8 could have" -
been represented with fewer than 1024 points, since the waveform is ‘over-—
sampled by a factor of four. For example, the filter impulse response
could have been represented by 256 points, in which case the resulting
multiplication savings factor would be 32. However, the frequency response
would look different than that shown in Figure 9. The waveform spectrum
would be s:pread out over the repetition period so that the filter would be
essentially an all-pass filter with an approximately quadratic phase function,

and would have to be preceded with a linear-phase low-pass filter.
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V. Optimal Filtering of the Linearly Frequency Modulated Waveform

This technique can also be used to synthesize digital filters matched to
other important waveforms. For example, of great importance to radar
signal processing is the linearly frequency modulated (LFM) waveform
(Ref. 8). The magnitude and phase characteristics of this waveform are very
similar to lthose of the stepped frequency waveform illustrated in Figure 8§,
Tlie big difference in the two is that the LFM waveform has a continuously
quadratic phase funcfion in time, whereas the SFM waveform has a piece-
wise continuous phase function that is only approximately quadratic. Be-
cause of the similarities of these two waveforms, one would expect that the
filter.-of Figure 6 could be modified to optimally filter the LFM waveform.

If in the filter of Figure .6 there were more than one subfilter preceding
each deiay, as shown in Figure 14, than greater freedom in selecting the
complex-valued irﬁpulse response would exist. In fact, if there were N/L
subfilters preceding each delay, then a.ny complex impulse response defined

by (6) could be achieved by selecting the appropriate weights.

. — . — N )

Fy 1 #20,1,2, ., Lolik =0, 1, 2,..., [X] S (20)
which are related to the impulse response ! h(n);n =0,1,2,..., N-l‘ as
follows:

N
(E+1) - 51 \
- -j27kn J, _
Fy Y h(n) exp [—l—N/L ] t=0,1,2,...,L-1 {21
n=¢§ - —
L - NT.
k—O,l,Z,...,[L] 1

Hence, specific weights can be chosen so that the filter of Figure 14 is

matched to theLFM waveform,

The number of multiplications required to process a sequence of input
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L
2. K. N for the composite filter (including the N frequency weights), This

samples with the filter of Figure 14 is K. [l] per subfilter for a total of

is the same number of multiplications as required by the convolution reali-
zation of Figure 3. Consequently, this realization has no advantage over

that of Figure 3 if a filter perfecf‘.y matched to an LFM waveform is required.
However, if a filter that is approximately matched to the LFM waveform is
acceptable, then this synthesis approach is advantageous., For example, the
filter of Figure 10 which only requires 16- K multiplications is almost matched
to an LFM waveform of length 10247 and bandwidth 1/(47). The phase func-
tion of the SFM filter is not exactly quadratic, as is desired for a filter
matched to an LFM waveform. However, the mismatch is small, and for
some applications the SFM filter of Figuré 10 might ge adequate for an LFM
waveform. |

If a filter which is sligh'ly mismatched to an LFM waveform is accept-
able, but less mismatch is desired than that provided by the SFM filter,
then the filter of Figure 15 mighe be considered. In this filter, three sub-
filters per subsection are used. The complex weights can be chosen to ap-
proximate the LFM quadratic phase function, but with less mismatch than
with one subfilter per subsection as in Figure 10. The number of multipli-
cations needed for this filter is 3-L-K, or 48- K. Hence, the savings in
multiplications for this filter, as compared to the filter of Figure 7, are
2048/48, or approximately 43,

It is obvious that the I.FM quadratic phase function can be approximated
with increasing accuracy by increasing the number of subfilters per subsec-
tion. Of course, the multiplications savings factor decreases with the in-
creasing number of subfilters. The limit of this approach is when all (N/L)

subfilters per subsection are used, in which case the filter is matched to
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the LFM waveform and 2- N . K multiplications are required.

VI. Conclusions

Nonrecursive digital filters can be synthesized by several techniques,
as described by various authors. Furthermore, the complexity of the filter
may depend on the synthesis technique chosen. This paper has presented a
technique for designing some types of finite-duration impulse-response di-
gital filters which require many fewer multiplications than other known
techni;ques. Any desired finite-duration impulse response can be synthe-
sized with this approach. However, the savings in multiplications depend
on the impulse responses desired. For some well-known radar applications,
such as pulse compression, the multiplication savings factor can be very
large. The examples discussed in this paper indicate that the savings in the

required multiplication rate can be factors of a hundred or more.
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1Iv. ON THE OQUTPUT OF MULTIPLE SERVER QUEUES

WHERE NOT ALL SERVERS ARE IDENTICAL

It is known that if the input to an N server .queue, with the servers
having exponential service time distributions with identical means 1/7, is
Poisson with paramter A, then, after attaining equilibrium, the output is
also poisson with parameter ) . It is shown in this paper that as long as
the servers have exponential service time distributions, even if not iden-
tical means, and equilibrium is attained with a Poisson input of parameter
A, the qutput will also be Poiason with parameter A . Furthermore, for
the output of each individual server to be Poisson, it is necessary and
sufficient that the propability of a particular gerver being busy, conditioned
on the number of customers in the system, be equal to the probability of

any other server being busy, under the same conditioning. The output from

Ti

.gerver i will then have parameter ) and be independent of the output
from the other servers. However, for such equiprobable conditions to
exist, restrictions must be placed on the digpersion of the mean service

times of servers,

I. Problem Description

The problem of describing the output of a queue has been given con-
siderable attention, primarily due to the problem's application to tan-
dem queues. However, in most of the literature that attention has been
focused on queues where the N servers have identical service time dis-
tributions and on the output of the total ;‘system rather than on the output

of any individual server. In this paper the cutput of an individual server
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is examined. The motivation for this examination is the consideration of
tandem queues in networks where the output of each server may feed into a
different queue than the queue fed by the output of another server. In parti-
cular, modeling of communication networks for message transmission from
a terminal to a set of processors over channels of fixed capacity may be
posed as an arrangement of tandem queues where the channel capacities and
message lengths determine the various service times of the servers.

The general queueing system for this paper is shown in Figure 1. The
input is Poisson with parameter A, Each server i has an exponential service
time distribution with parameter T not necessarily all the same. P.7J.

.'E’:urke1 has shown that if the service time distributions are all identical and
N

o, =No > A
i=1 ?!

and equilibrium has been attained, the output of the overall system will be
Poisson with parameter A, same as the input, Edgar Reich2 has also shown
this result by arguments different than those of Burke. In this paper the
basic strategy of Burke ig followed to show that the output from the overall
system is Poisson even if the servers are not identically distributed, so
long as equilibrium is attained and the system is Markovian. Furthermore,
for the output of each individual server to be Poisson, it is necessary and
sufficient that the probability of a server being busy, conditioned on the
number of customers in the system, be equal to the probability of any other
server being busy, under the same conditioning. The output from a parti-
cular server i will then have parameter A -g-'l and be independent of the out-
put from the other servers. However, for such equiprobable conditions to
exist, restrictions must be placed on th(;, dispersion of the mean service

times.
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1I. Equilibrium Probabilities

In order to pursue the analysis it is first necessary to determine the
equilibrium probabilities describing the queue. The probability of a parti-
cular server j being busy conditioned on i customers in the system will be

represented as
Q; = Pr (customer in crjl i customers in system)

The mean service time of the system, conditioned on i customers in the sys-

‘ tem, is.defined as:
N

' _ i
j=1

Finally, define the equilibrium probability of the state of the system as

P.1 = Pr (i customers in system)

The equilibrium relations describing a system of N servers may now be
written as below.
A PO =By Pl

(?H'""i) Py=dP 41y P

41 1< i< N-2
(1) (7L+}-LN_1) PN-l = A PN-Z +o PN
5& =2
{A+o) Pj Pj-l +G-Pj+l N<j< %

These equations are subject to the constraint

[+ o]
120
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Define ¢ =

.?.L&_. ' ti =-}%' w1<1<N-1, and{, =1. The solution to the above
i
equations (1) subject to the constraint (2) is then easily found to be

.

j
P.=10 ¢ P 1< j<N-1
}o4=0 ! T

(3) Pj = (£)
i=0

III. Qutput of General Queue

The equilibrium probabilities may be interpreted as the probabilities
of finding the system in a particular state at any randomly selected instant
of time. Central to the developments in this paper is the result that the
probabilities of finding the system in a particular state at a randomly se-
lected instant of timne drawn from the set of instants immediately afte;' de-
partures are also equilibrium probabilities. This result is stated below as

a lemma,

Lemma 1

The state of the general queue, subject to Poisson input and having
attained equilibrium, after a departure is described by the equilibrium
probabilities.,
With My replacing T for 1< i < N-1 the proof of the lemma is completely
analogous to the demonstration of a similar lemma by Burke.

The above lemma and repla.cements.ca.n be used to demonstrate the .

following theorem which is a simple extension of Burke's theorem.
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Theorem 1

The output of the general ciueue with Poisson input having parameter A,
and after attaining equilibrium, is also Poisson with parameter A

The demonstration is again completely analoguous to the demonstration

by Burke.

1V. Qutput of Individual Server

The principal theorem of this paper pertains to the output of the indi-

vidual servers in an N server queue. The theorem is stated below.

Theorem 2

For the N server queu‘e with all servers having exponential service
time distributions, but not necessarily identical means, and having a Poisson
input with inarameter A, and having attained equilibrium, the output of each
ir;di\;ridual éérver will be Poisson if and only if it is equiprobable that a cus-
fomef be‘ inr server i as in server j, for any i,j, conditioned on 1 customers

in the system. The Poisson outputs will each be independent of all the other

oufputs and will have parameter A —g—i'
Thé proof of this theorem will be presented in two parts, the first part
showing suffciency and the second part showing necessity.

For ease of notation and without loss of generality, when referring to
an individual server, server one with exponential service time parameter
T will be cho‘slen. it will be easily seen that extension of what formulas
are based on referring to an individual server from server one to any other

server i is only a matter of notational complexity.

The sufficiency part of the proof follows very closely to Burke's proof. L)

T ‘
( )Consequently, only the significant diviations from the work of Burke will
be given.
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The necessity part of the proof will be more involved. The general solu-
tion of the system of equations will be expanded as a matrix exponential,
and in order to have a Poisson output various summation equalities will
result. These equalities will then be shown to necessitate the conditions

of the theorem.

V. Sufficiency

The notation of Burke is redefined to pertain to an individual server

rather than the general system. Let t  be any randomly selected instant

0

of time, (later taken to be zero for convenience.) Let L. be the length of

time from t, to the instant of the next departure from 0y and define

Fk(t) =Pr [nlt) =k, L>t - tO]

Note
o)

Fk(t) =F{t)=Pr (L>t - to}
k=0
and
Fk (to)z Pk
A new symbol, interpreted as the portion of the conditional mean service

time My contributed by the server j, is defined as

i i

. =0, Q.

HE TR Rad
Note

N

Y Nt

j=r 4

Before proceeding with the sufficiency part of the proof a lemma is given.

The lemma is quite comparable to the lemmma stated earlier.

Lemma 2

If it is equiprobable that a customer be in server i as in server j, for
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any i, j, conditioned onl customers in the system, then the probabilities
describing the state at any random time selected from the set of departure
instants of server i are the equilibrium probabilities,

The conditions of the lemma are simply

Qj=Q, ¥1i i k

Thus
i i i
i 59y S s B
Mo ON o
b Z G.‘Ql Q.o

The following equations describe the system.
F (t+dt) sF,(t)(1-Adt) +F (£)(1-Xdt) (W, -n © ) dt
oY 0 . 71 1 1
’ _

F.l(t+dt)'= F, )0 ae)(1-p, 1d) + F (£)(1- Adt)(1- ,dt)

i-1

+F 20 [ (g -0 ) at]
FN-l(t+dt.] =FN-2(t) (A dt)( l-p.N_z dt) +FN-1(t)(1- Adt)(l- P'N_ ldt)
{(7) + FN(t)( 1-Adt)[ (o - crl) dt ]

FN(t+dt) = FN_]_(t)(ldt)( dt) + FN(t)(l-hdt)(l- o dt)

- by

+F (t)(l-ldt)[(cr-o'l) dt ]

N+l

F(t+dt) = Fi_ (X dt)(1-0 dt) + Fyit)(1-X dt) (1-5 dt)
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+F (tH(1-Adt){ (o ~o

i+l ydt |

|
N+1<j<oo,
Performing the usual manipulations, these equations become

4 1
FO —-lF0+(p.L1- nl}Fl

* i+l

= ; - - < i< -

‘Fi ?LF.I_I (?L+Hi)Fi+(pi+1 n }Fi+1 1 <i<N-2
(8) . ) : ‘
Frop = Myp -y ) Frq + (o -0 Fy

= - - < 3 <
F . KFJ._I (l+ﬂ')Fj+(0’ 0’1) Fj+l N<j< oo

This is a system of first order, linear, homogeneous differential equations

K’ where tO has been chosen as

zero for convenience. The solution of this system of equations is unique

subject to the initial conditions Fk(O} =P

and it can be easily verified that with Q; = O_; the solution is

a,
-a-L ¢
Fk(t) —Pke o

The remainder of the proof of the lemma is quite analogous to Burke's
demonstrations.

To proceed with the sufficiency part of the theorem's proof some
symbols are redefined. Let L be the length of time from any departur:
instant of Ty i.e., the interdeparture interval length of ¢ 1’ and n{t) be
the state at timé' t after some arbitrarily chosen departure instant of o 1’

1:d , where for convenience td is taken as zero. Define
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F () =Pr [ nf) =k, L >t]

and note

F ) =
K= 0 k' = F(t) = Pr (L>¢t)

With this notation the set of differential equations (8) can be seen to describe

the system, and with le = Ql: the solution to the equations is

- A AN t

Fk(t) = Pk e o

Following the format of Burke this is easily used to show that if Q} = QL ,
o)

for all i, j, k, the output is Poisson with parameter Pt-é_-'-l-
Finally note that by theorem one the overall output is Poigson with
parameter A and hence has the characteristic function

‘D(S}:e-l-i-)ts

From the results of this section, the characteristic function of the ith out-

put is - S
i i
@, (s) =e A A T s
With N 5 N -
N v i
- A —_—=
I @ () =e AL s
i=l i=1 i=l
- A +As
=e
= & (s}

it is easy to see from the convolution theorem that all of the outputs are

independent of each other.

Necessity
To prove the necessity part of the theorem, it will be assumed that the

output from the server is Poisson with parameter @i .



81

The differential equations describing the system may be written in

matrix notation as

(10} E'= AF

with _
A _(2+P'1) (“z-rllz)
0 A - _n?
(Atpy) (g -n7)
A =
0 0 X ) o k1
At G -y )
0 0 0 A -{x+a) (r-rl)

The system of differential equations is subject to the initial conditions

where ty is a randomly selected instant of time conveniently taken as zero

and P is the equilibrium probability vector

It is well known that the solution to these equations may be written as

F=ep

2t2
2!

P+APt+ A%Pt2 4.

(I + At + A + 7).

g

The product AP can be shown to be



_— -
e A ——— P
Py 0
#+1
_ =2 P,
S|
AE: .
oo
1
2= Py
o
1
- A Py

Since

Y, F_ &) =Pr(L>¢)
k

and the outputis Poisson, implying

Pr(L>t)=e P1t

2 .2
_1-‘31t+ﬁ1t2!’|
Therefore,
Y, AE = B,
k
and thus it can be shown that
_ N-2 k4l
U]. T]l 0’1
51=X—+RZ { '—U—)PE
- ¢ =0 p'1-:+l‘

As before, the characteristic function of the overall output is

q’(s)ze—k+ls

and the characteristic function of the output of each individual server is



N-2 / k+l . N-2
1 1 1 1
5 (s)ze-{x ) — -5 pk] A=+ 1;_0
! < k=0 M J -
K+l
1 i
T Pk B

Hett

Thus again the product is found to be

N

I &, (s)=
. i

i=1

e-?L+7Ls= & (s)

and therefore the individua‘l outputs must be independent of all the other
outputs.

Having established the above result, the remaining portion of the prootf
will proceed under the assumption that the individual outputs are each
Poisson and independent of the other outputs.

Combining previous results with the independence assumption gives

£2 3

- At 2
PL. >¢tint)=k] =e =l-2t + A5 + O (t74)

i=1

where by O (1:3 +) is meant terms involving the third or higher powers of t.

Now

_ P[Li>t,nu)=k]

[Pr1q>t|nﬁ)=k]
Pr [n(t) = k]

and it can be shown that



nlin?2 /nl n?
2 M POJ“\Z-- 1M P,
My Ha \“1 )
SRRy IR AR
2ol op af - )P+, 1L
PopMeez € Mo Mo42 Pra Mg
2 .
A°P =  , LN
22l B 4oy L S P
2 N-1 N-1\To Ty ) N-
2
2 "1
AT — Py
F
D2
2r "y
A P
o

APand AZE can be used to form a matrix exponential expansion in

terms of O(t3 +). Continuing this expansion with the previous exponential

expansion gives

k+1 k+2 N-1 N k+l k+1
+2 ¥ L ! - 0< K< N-3
z' Mt 1 **k+z el w2 -
i=1 i=1 j=i+1l k+1
and
N N-1 N-1 N W-1 N-1
4] ¢, ] o
1 1 ] -
Z‘ b ©® + 2 Z 2 2 =1
i= 1 i=1 j=i+1 {("N-1)
Note
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Taking the difference gives

k+1 k+2 k+1

N
E nyoon ) 21‘_3 ny ._2
i1 Prel Pre2 21 \(Mr+t

N-1 N-1
% K T n 4 2
Z1 PN © #1\ PN-1

These expressions are most conveniently written as vectors. Let

| 4

nk nk nk
xk = 1 il s _N'—
My Hx "

Then the expressions become

X * Koqy = X ™ Xy k< N-2

where the * indicates the dot product (inner product) of the vectors,
The vectors are also subject to the constraints
N

X, .=1 X, .>0
iy ki

The constraints imply the vectors must all terminate on the nth

dimensional hyperplane P defined by the N points
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Ppo= (850 850 cevn By) 112N

where 5:1j is the Kronecker delta, The vector relations may be

restated as

X ¥ (Xpyqy - X) =0 1< k< N-2
X =
N-1*(Y-Xy,)=0
Thus, either xk+l is the same as Xk or the difference Xk+1 - Xy

must be perpendicular to Xk’ for 1 € k < N-2, and similarly, either
XN-I is the same as Y or Y-XN_I is perpendicular to XN-I . How-
ever, since each vector terminates on the plane P, their difference
can be seen as a free vector lying in the plane P, Hence , either
Xk+1 must be the same as X x* ©°F Xk must be perpendicular to

the plane P . There is only one vector perpendicular to the ‘pla.ne P

and that is the vector

L = (1/N, I/N, ..., 1/N)

Therefore, either Xk = Xk+l or Xk = ,+ Thus, by the above re-

lations the vectors can be split into two classes.

31-9-05151«1&‘.3.}{1{-:1 1< k

| A
-

IAssume i # 0. Then
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The following relation can also be shown,

XIPO + XZPI + ... Xn-IPN-Z

= X, P +XP1+...+X

2 Fo 3 + YP

n-IPN-3 N-2

For ease of reading the derivation of this relation will not be given until

after the proof is completed. The above relation may now be rewritten as

__LP0+... + lP_1 + YPi+... YPN-Z
or

J'Pl = YP1
ar

+ = X

Therefore, unless Y = (1/N, 1/N, ... ,1/N), there is a contradiction

and i = 0., Hence

X, = ¥ vV k
or

k

ny 7

P @
But

k
m3 0—iQi
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Therefore
O'.Q%{ T,
i—i" i
My T
or
k _ Mk .
Qi = = Vi, k

Since the right hand side does not involve the index i, we have Qf = QIJ‘

| for all i, j, k, thus completing the proof.
It remains to demonstrate the relation

X1P0 + XZPI +oaee F XN-IPN-Z

=X, Py 4+ X3P1 toes t XN-I PN—3 + YPN-Z
The demonstration involves combining the criteria for the outputs to be
Poisson and the criteria for the outputs to be independent.

First the
criteria for the outputs to be Poisson will be derived.

As before, define
Fk(t) = Pr| L1 >t, n{t) = k]

The system is then described by the system of differential equations

o

F =A1£

subject to
E{0)= P

where Al is the same as earlier
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The solution is then known to be

2

Fity=eMtp- (1+a,+a% &y P
2 t8

-P+a P+ AZpE 4,

where AII_’ and A? P are the same as before,

Now

ZQ Fi (t)= Pr(L, >t)

and if the output is Poisson,

2
= o~ Pt gL 2 £
Pruq>t) e 1" =1 Bt +B] ST e

Thus

Pr(L >t)= 2 (P+a, P+ Afp Lt 4 )

1

These results imply

(}; A P - EA?E

Taking the respective sums and comparing leads to

o N-2 nkH‘ o N-2 nk+1 o
c [_1_+>: 2 1 p][z QUB N | P]
1 L g o k =0 \Pra1 i g k

=0 \ Mkt

N-3 nk1+1 v o 2
+ E T \F - Pk =0
=0 MPrt+a Mtz

This is the criteria for the outputs to be Poisson. _
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Now the criteria for the vutputs to be independent will be derived,

Define

Gy (t) = Pr[Ll >ty Ly >t oue Ly.1 >t n'(t) = k|

Y

and note

G, (0) = Py

‘ &Gk(t) = Pr{L1>t, Lz >t, cae 3} LN'1>t)

The above function is different from the other functions defined earlier
in that it deals with N-1 of the N servers instead of an individual server

!
or all the servers, The following equations describe the system,

*

_ o
Go'; - AGy + 1y G
L ]
“.
. i1 . .
Gy = MG - M+ w)Grny Gy lziz N-2
(11) . ,
- . Y
Gun-i . IR G SRR SRR 8
. ' S
L ]
Gj hG,j_rl—{J\+a-.) Gj+UNGj-1 ' N<j<aw

These equations are subject to the initial conditions

G() = P

The system of differential equations (11) may be written in matrix

notation as

(12) G=BG = G(O)=P
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where B is the matrix -

1
-\ nN
x SO HRy) 2
) N
0 A SN ER) ns
2 N
B =
i+1
0 0 A -V 0y
0 0 0 A “( ey ) Oy
0 0 0 0 A -(Ao) o
As before, the solution is known to be
G=ePtp = @+Bt+BYA? +... )P
2 1

=_13+BEt+B2PT2+...

From this result the products BP and BZE may be calculated,

In order to have independence it is necessary that

Pr(Ly>t Ly>t, ..., Lig y>t) = Pr(ly >t)... Prily_;>t)

Thus by associating the 1:2 terms of the joint density with the product
of the densities it is seen to be necessary that

® N-1 o 2 N-2 oo N-1 o ‘
5% - T ame2Y ( § am[F(F ap)
k=0 i=1 =0 =1 =0 =i+l keg
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This leads to the requirement

N:2 N:1 o, N:2 k“ v, 1IN-2 /a5 o\ ]
C2 ['&”*Z ol | DN Erepuelielr I
i=1 j=1+l =0 “‘k+1 Zo\ Pril

Kt 1 K2\ ktl C kt2
N-2N-1 N-3,.n ¢, ; A
' Z ['ﬂ i ( i ny s 3 Ji n i )JP
; Mt k

or with sufficient algebra Cl and C"Z may be combined to yield

N-1¢,\ N-2N-1fp"tt o N-2 N1/ K+l
(13) i), i % Np
| [(1);1 G) kZ'O =1 (“k+1 ) ][kz—o ) (ukﬂ 0') k]

=1
N-3 /N-1 N N1 fe, o KF2
+ —l— - _ 2 P, =
13 ' T T k 0
k=0\j=1 k+1 i=1 k+2
with
*Z'l :':1—= U"-'U'N —1 u-_tl
o T I
i=1
and
k k
N-1 pn1 By Th N nkN.




93

substituted in (13) and with a little manipulation it can be seen that

k+1

k4l ' _

"N N N-2fny TN\

i T Pk T Pk
k+1 = o\ Mk+1 ,

, kt+l / k+2
%‘3 1N ("N N ) o
42 o ) k

gt

o Frtl

oafry a2\ e (D ey
= E a T Pt Z m =7 ] Fx
k=0 k+2 k=0 k+1

But the term on the left is simply C1 for server N implying

k+2 k+1
N-3 T N , N-2/n N N
E o Pk+ Z T Pk =0
k= o\ Fk+1 ‘

0 Hit2 k=0
or
Niz nk+1 N- ”kl\:z o
(14) p. + —X p
=0 _;{+1 Z:=o Ke+z K ¢ "N-2

Since this must bold for any server, it follows
NZ-’Z Nz‘-‘3
X P = X P. + YP
k1" k kt2 " k -2
k=0 =0 ' . N
or

X, P, + X,P, + ... +X_ Py,

XZPO + X?‘P1 + ... t XN-IPN—B + YP

1

as desired.



94

VIII, Restrictions ' -

It has been shown that only when Q; = Qi can the multiple servers
with exponential service time distributions having different means each
generate a Poisson output. It has yet to be sho;avn how this set of equilibrium
probabilities might be established. In this section the two server case will
be examined in order to show a means of estabiishing the e‘quilibrium proba-
bilities and also the nature of restrictions on the dispersion of the means
of the lservice times resulting from the necessity of establishing the eqﬁi-
librium probabilities. |

Consider the two server queue shown in figure two. | All the appropriate
assumptions are made in order to have Poisson outputs from each server.
Then. |

1 ]
Q= Q,

and since their sum must equal one,

Qil=~§—, i=1,2

The following equation describes the system relative to server gne, witere

R is the probability of assigning a customer arriving to find an empty

system to server one,

(14) (x *"“1”31@} - AP.R + o P

The application of the equilibrium analysis given earlier in this paper

shows

o 1-t
Po 7 L)< C



95

where

kY
"

we
0

Using these results in (14) yields

U'l"9'+}\ (cr1 - crz)
-2

o

(15) ' R =

Thus by assigning customers which arrive to find an empty queue to
server one with probability R given in (15} each server in the two
server queue will have a Poisson output.

Since R is a probability, it is subject to the restriction

0<R< 1
Therefore,
' g 0 + N (0 -0,)
0 < 1 . 12 < 1
— -2~ —_—
o
Let o, = BT, then v, = (1-p) o and the following restrictions
result.
4 1+¢

S f

Mhis restriction is indicated in the table below and is shown in graph
form in figure three, The;restriction (16) shows that in order to
establish Poisson outﬁuts-f-;om each server the dispersion of the

service time means must be restricted.
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4 L. B. U. B,
0 0 1
.2 . 143 . 781
.4 . 222 777
.6 .273 . 729
.8 . 308 . 693
1.0 . 333 . 667
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FIGURE ONE

General N Server Queue
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FIGURE TWO

Twa Server Queue
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FIGURE 3

Plot of acceptable g versus §{ - server case
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In this paper it has been shown that a multiple server queue, where
each server has an exponential service time distribution with possibly
different means, subject to a Poiseon input wit.h parameter A, and after
attaining equilibrium, will have a Poirsson output with parameter \.
Furthermore, the output of each individual server i .will be Poisson with
parameter N fo-:i- if and only if it is equiprobable that a customer be in
server i, conditioned on 1 customers in the system, as in server j,
with the same conditioning. The two server queue was analyzed to show
how such equilibrium probabilities might be established and that for such
equilibrium probabilities to be -pos sible tﬁe mean service times must not
be too different. Since systems are designed by criteria other than mak-
ing outputs fall into some nice statistical characterization, further in-

vestigation of the restrictions was not pursued,
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